Add like
Add dislike
Add to saved papers

Structurally stable N-t-butylacrylamide hydrogel particles for the capture of peptides.

Hydrogel particles have proven to be powerful tools for the capture and concentration of low abundance, low molecular weight peptides and proteins from complex biofluids, such as plasma. The primary means of recovering and washing the particles following harvesting is through centrifugation, which can be a very time-consuming process depending on harvest conditions. To improve the process of particle recovery, washing, and elution we have developed new particle formulations: incorporating N-t-butylacrylamide (tBA) in the polymer backbone with monomers bearing more acidic functional groups and higher degrees of cross-linking. These particle formulations produce a stable architecture that does not significantly respond to changes in environmental conditions, such as pH and temperature. These two new formulations impart structural stability to the particle, control swelling, and improve pelleting through centrifugation, even at high pH values. These structurally stable microparticles yield improved particle recovery while maintaining the peptide capture properties of the particle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app