Add like
Add dislike
Add to saved papers

Multiplex immunoassays using virus-tethered gold microspheres by DC impedance-based flow cytometry.

Bead-based multiplex immunoassays for common use require enhanced sensitivity and effective prevention of non-specific adsorption, as well as miniaturization of the detection device. In this work, we have implemented virus-tethered gold microspheres for multiplex immunoassay applications, employing a DC impedance-based flow cytometer as a detection element. The advantages of virus-tethered gold microspheres, including excellent prevention of non-specific adsorption, are extended to signal enhancement arising from the large quantity of antibody loading on each virion, and to flexible movement of filamentous virus. Individual virus-tethered beads generate their own DC impedance and fluorescence signals, which are simultaneously detected by a chip-based microfluidic flow cytometer. This system successfully realized multiplex immunoassays involving four biomarkers: cardiac troponin I (cTnI), prostate specific antigen (PSA), creatine kinase MB (CK-MB), and myoglobin in undiluted human sera, elevating sensitivity by up to 5.7-fold compared to the beads without virus. Constructive integration between filamentous virus-tethered Au-layered microspheres and use of a microfluidic cytometer suggests a promising strategy for competitive multiplex immunoassay development based on suspension arrays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app