Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of innate immunity in primary human cells using a plant virus derived nanoparticle TLR7/8 agonist.

Rod-shaped virus-like nanoparticles (VLNP) made of papaya mosaic virus (PapMV) coat proteins (CP) self-assembled around a single stranded RNA (ssRNA) were showed to be a TLR7 agonist. Their utilization as an immune modulator in cancer immunotherapy was shown to be promising. To establish a clinical relevance in human for PapMV VLNP, we showed that stimulation of human peripheral blood mononuclear cells (PBMC) with VLNP induces the secretion of interferon alpha (IFNα) and other pro-inflammatory cytokines and chemokines. Plasmacytoid dendritic cells (pDCs) were activated and secreted IFN-α upon VLNP exposure. Monocyte-derived dendritic cells upregulate maturation markers and produce IL-6 in response to PapMV VLNP stimulation, which suggests the activation of TLR8. Finally, when co-cultured with NK cells, PapMV induced pDCs promoted the NK cytolytic activity against cancer cells. These data obtained with primary human immune cells further strengthen the clinical relevance of PapMV VLNPs as a cancer immunotherapy agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app