JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular and functional characterization of two malic enzymes from Leishmania parasites.

Leishmania parasites cause a broad spectrum of clinical manifestations in humans and the available clinical treatments are far from satisfactory. Since these pathogens require large amounts of NADPH to maintain intracellular redox homeostasis, oxidoreductases that catalyze the production of NADPH are considered as potential drug targets against these diseases. In the sequenced genomes of most Leishmania spp. two putative malic enzymes (MEs) with an identity of about 55% have been identified. In this work, the ME from L. major (LmjF24.0770, Lmj_ME-70) and its less similar homolog from L. mexicana (LmxM.24.0761, Lmex_ME-61) were cloned and functionally characterized. Both MEs specifically catalyzed NADPH production, but only Lmex_ME-61 was activated by l-aspartate. Unlike the allosterically activated human ME, Lmex_ME-61 exhibited typical hyperbolic curves without any sign of cooperativity in the absence of l-aspartate. Moreover, Lmex_ME-61 and Lmj_ME-70 differ from higher eukaryotic homologs in that they display dimeric instead of tetrameric molecular organization. Homology modeling analysis showed that Lmex_ME-61 and Lmj_ME-70 notably differ in their surface charge distribution; this feature encompasses the coenzyme binding pockets as well. However, in both isozymes, the residues directly involved in the coenzyme binding exhibited a good degree of conservation. Besides, only Lmex_ME-61 and its closest homologs were immunodetected in cell-free extracts from L. mexicana, L. amazonensis and L. braziliensis promastigotes. Our findings provide a first glimpse into the biochemical properties of leishmanial MEs and suggest that MEs could be potentially related to the metabolic differences among the species of Leishmania parasites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app