Add like
Add dislike
Add to saved papers

Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains.

Due to a lack of reliable and accurate methods, determining the postmortem interval (PMI) of human skeletal remains is one of the most important and challenging tasks in forensic medicine. In this paper, we studied the changes to bone chemistry with increasing PMI in two different experimental conditions using Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics methods Paired bone samples collected from 56 human corpses were buried (placed in soil) and unburied (exposed to the air) for intervals between 76 and 552 days. The results of principle component analysis (PCA) showed the chemical differences of these two cases had a significant influence on the rate of decomposition of the remains. Meanwhile, satisfactory predictions were performed by the genetic algorithm combined with partial least-squares (GA-PLS) with the root mean square errors of prediction (RMSEP) of 50.93days for buried bones and 71.03days for unburied bones. Moreover, the amide I region of proteins and the area around 1390cm-1 , which is associated with fatty acids, were identified with regular changes by GA-PLS and played an important role in estimating PMI. This study illustrates the feasibility of utilizing FTIR spectroscopy and chemometrics as an attractive alternative for estimating PMI of human remains and the great potential of these techniques in real forensic cases with natural conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app