Add like
Add dislike
Add to saved papers

Molecular mobility in several imidazolium-based ionic liquids according to data of 1 H and 13 C NMR relaxation.

Temperature dependences are compared for1 H and13 C NMR 1/T1 curves relaxation rates in three imidazolium-based ionic liquids (ILs), namely, in [bmim]PF6 , [bmim]BF4 , and [emim]CH3 COO.13 C curves show alike behavior for all three ILs and follow a well-known Bloembergen-Pound-Purcell (BPP) equation. On the contrary, an essential part of1 H curves differ strongly from corresponding13 C ones and also have different shapes for different ILs. For the first time, we have detected the specific, two-maximum shape of1 H relaxation curve for hydrogen atom of C(2)H group of the [emim]CH3 COO. Assuming that this maximum reflects the correlated rotation of several adjoining ion pairs, we have tried to destroy this rotation by addition of glycerol to the [emim]CH3 COO. The second, high-temperature maximum has disappeared in the [emim]CH3 COO-glycerol mixture, and this fact confirms our assumption. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app