Add like
Add dislike
Add to saved papers

Structural insights and binding of a natural ligand, succinic acid with serine and cysteine proteases.

In the age of growing infectious diseases, there is a great demand for new inhibitors which can exhibit minimum side effects. Owing to the importance of proteases in life cycle and invasion, they have been projected as attractive targets for structure based drug designing against microbes including viruses. Here we report the inhibitory activity of a well known natural compound succinic acid against both serine and cysteine proteases. The ligand is found co-crystallized with Bovine pancreatic trypsin in one of our crystallization trials and the diffraction data up to1.9 Å reveal its interactions with the catalytic triad residues Histidine 57 and Serine 195. Binding of the ligand with these proteases have been validated using caseinolysis inhibition. With trypsin, ITC analysis showed tight binding of the ligand, resulting in change in Gibb's free energy (ΔG) by -20.31 kJ/mol. To understand the existence of succinic acid at the active site, molecular docking was performed and it revealed binding of it with trypsin and papain at corresponding active sites. This dual inhibitory activity of natural ligand, succinic acid can be accounted for the recent reports on anti-viral property of plant extracts where dicarboxilic fatty acids are normally abundant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app