Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120).

Protective effect of omega-3 polyunsaturated fatty acids (n-3 PUFA) on non-alcoholic fatty liver disease has been demonstrated. FFA4 (also known as GPR120; a G protein-coupled receptor) has been suggested to be a target of n-3 PUFA. FFA4 expression in hepatocytes has also been reported from liver biopsies in child fatty liver patients. In order to assess the functional role of FFA4 in hepatic steatosis, we used an in vitro model of liver X receptor (LXR)-mediated hepatocellular steatosis. FFA4 expression was confirmed in Hep3B and HepG2 human hepatoma cells. T0901317 (a specific LXR activator) induced lipid accumulation and docosahexaenoic acid (DHA; a representative n-3 PUFA) inhibited lipid accumulation. This DHA-induced inhibition was blunted by treatment of AH7614 (a FFA4 antagonist) and by transfection of FFA4 siRNA. SREBP-1c (a key transcription factor of lipogenesis) was induced by treatment with T0901317, and SREBP-1c induction was also inhibited by DHA at mRNA and protein levels. DHA-induced suppression of SREBP-1c expression was also blunted by FFA4-knockdown. Furthermore, DHA inhibited T0901317-induced lipid accumulation in primary hepatocytes from wild type mice, but not in those from FFA4 deficient mice. In addition, DHA-induced activations of Gq/11 proteins, CaMKK, and AMPK were found to be signaling components of the steatosis protective pathway. The results of this study suggest that n-3 PUFA protect hepatic steatosis by activating FFA4 in hepatocytes, and its signaling cascade sequentially involves FFA4, Gq/11 proteins, CaMKK, AMPK, and SREBP-1c suppression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app