Add like
Add dislike
Add to saved papers

Synthesis and bioactivities study of new antibacterial peptide mimics: The dialkyl cationic amphiphiles.

The emergence of infectious diseases caused by pathogenic bacteria is widespread. Therefore, it is urgently required to enhance the development of novel antimicrobial agents with high antibacterial activity and low cytotoxicity. A series of novel dialkyl cationic amphiphiles bearing two identical length lipophilic alkyl chains and one non-peptidic amide bond were synthesized and tested for antimicrobial activities against both Gram-positive and Gram-negative bacteria. Particular compounds synthesized showed excellent antibacterial activity toward drug-sensitive bacteria such as S. aureus, E. faecalis, E. coli and S. enterica, and clinical isolates of drug-resistant species such as methicillin-resistant S. aureus (MRSA), KPC-producing and NDM-1-producing carbapenem-resistant Enterobacteriaceae (CRE). For example, the MIC values of the best compound 4g ranged from 0.5 to 2 μg/mL against all these strains. Moreover, these small molecules acted rapidly as bactericidal agents, and functioned primarily by permeabilization and depolarization of bacterial membranes. Importantly, these compounds were difficult to induce bacterial resistance and can potentially combat drug-resistant bacteria. Thus, these compounds can be developed into a new class of antibacterial peptide mimics against Gram-positive and Gram-negative bacteria, including drug-resistant bacterial strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app