Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Osteoblast AMP-Activated Protein Kinase Regulates Postnatal Skeletal Development in Male Mice.

Endocrinology 2018 Februrary 2
Studies have shown that AMP-activated protein kinase (AMPK), a crucial regulator of energy homeostasis, plays important roles in osteoblast differentiation and mineralization. However, little is known about in vivo roles of osteoblastic AMPK in bone development. Thus, to investigate in vivo roles of osteoblast AMPK, we conditionally inactivated Ampk in osterix (Osx)-expressing cells by crossing Osx-Cre mice with floxed AMPKα1 to generate mice lacking AMPKα1 in osteoblasts (Ampk-/- mice). Compared with wild-type and Ampk+/- mice, Ampk-/- mice displayed retardation of postnatal bone development, although bone deformity was not observed at birth. Microcomputed tomography showed significant reductions in trabecular bone volume, cortical bone length, and density, as well as increased cortical porosity in femur as well as development defects of skull in 8-week-old Ampk-/- mice. Surprisingly, histomorphometric analysis demonstrated that the number of osteoclasts was significantly increased, although bone formation rate was not altered. Loss of trabecular network connections and mass, as well as shortened growth plates and reduced thickness of cartilage adjacent to the growth plate, was observed in Ampk-/- mice. In primary cultured osteoblasts from calvaria, the expressions of alkaline phosphatase, type 1 collagen, osteocalcin, bone morphogenetic protein 2, Runx2, and osterix were significantly inhibited in Ampk-/- osteoblasts, whereas the expression of receptor activator of nuclear κB ligand (RANKL) and the RANKL/osteoprotegerin ratio were significantly increased. These findings indicate that osteoblastic AMPK plays important roles in bone development in vivo and that deletion of AMPK in osteoblasts decreases osteoblastic differentiation and enhances bone turnover by increasing RANKL expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app