Add like
Add dislike
Add to saved papers

Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers.

Pardaxin, with a bend-helix-bend-helix structure, is a membrane-active antimicrobial peptide that its membrane activity depends on the lipid bilayer composition. Herein, all-atom molecular dynamics (MD) simulations were performed to provide further molecular insight into the interactions, structural dynamics, orientation behavior, and cationic residues snorkeling of pardaxin in the DMPC, DPPC, POPC, POPG, POPG/POPE (3:1), and POPG/POPE (1:3) lipid bilayers. The results showed that the C-terminal helix of the peptide was maintained in all six types of the model-bilayers and pardaxin was tilted into the DMPC, DPPC, and POPG/POPE mixed bilayers more than the POPC and POPG bilayers. As well as, the structure of zwitterionic membranes was more affected by the peptide than the anionic bilayers. Taken together, the study demonstrated that the cationic residues of pardaxin snorkeled toward the interface of lipid bilayers and all phenylalanine residues of the peptide played important roles in the peptide-membrane interactions. We hope that this work will provide a better understanding of the interactions of antimicrobial peptides with the membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app