Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quasi-Static Resonances in the Visible Spectrum from All-Dielectric Intermediate Band Semiconductor Nanocrystals.

Nano Letters 2017 December 14
The quest for materials with metal-like properties as alternatives to noble metals is an intense area of research that is set to lead to dramatic improvements in technologies based on plasmonics. Here, we present intermediate band (IB) semiconductor nanocrystals (NCs) as a class of all-dielectric nanomaterials providing quasi-static optical resonances. We show that IB NCs can display a negative permittivity in a broad range of visible wavelengths, enabling a metal-like optical response despite the absence of free carriers in the NC ground state. Using a combination of spectroscopy measurements and ab initio calculations, we hereby provide a theoretical model for both the linear and nonlinear optical properties of chalcopyrite CuFeS2 NCs, as a case study of IB semiconductor nanomaterials. Our results rationalize the high performance of IB nanomaterials as photothermal agents and suggest the use of IB semiconductors as alternatives to noble metals for technologies based on plasmonic materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app