Add like
Add dislike
Add to saved papers

Changes in nitric oxide levels and their relationship with callose deposition during the interaction between soybean and Soybean mosaic virus.

Plant Biology 2018 March
The present study aimed to investigate changes in nitric oxide (NO) level and its relationship with callose deposition during the interaction between soybean and Soybean mosaic virus (SMV). Soybean cv. 'Jidou 7' and SMV strains N3 and SC-8 were used to constitute incompatible and compatible combinations. Intracellular NO was labelled with the NO-specific fluorescence probe DAF-FM DA. Confocal laser scanning microscopy (CLSM) was then used to observe changes in NO production during SMV infection-induced defence responses in soybean. The results showed NO fluorescence increased rapidly at 2-72 h post-inoculation, peaked at 72 h and then decreased in the incompatible combination. However, in the compatible combination, extremely weak NO fluorescence appeared in the early stage (2-24 h) post-inoculation, but was not observed thereafter. Injections of the NO scavenger c-PTIO prior to inoculation postponed the onset of NO production to 48 or 72 h post-inoculation. The same occurred when injections of NR or NOS inhibitors were applied prior to inoculation. The observation of callose fluorescence in the incompatible combination revealed that either the elimination or reduction of NO in the early stage led to a delay in callose formation, enabling the virus to cause systemic infection. Together with our previous findings, this study indicates that viral infection could induce NO production and callose deposition during the incompatible interaction between soybean and SMV. The production of NO involves NR and NOS enzymatic pathways, and NO mediates the process of callose deposition at plasmodesmata.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app