Add like
Add dislike
Add to saved papers

The targeted regulation of Gli1 by miR-361 to inhibit epithelia-mesenchymal transition and invasion of esophageal carcinoma cells.

Epithelia-mesenchymal transition (EMT) is critical for invasion and metastasis of esophageal carcinoma. Gli1, a transcriptional factor in Hedgehog pathway, is correlated with EMT, invasion and metastasis of tumors. However, its role in esophageal cancer is still unknown. Bioinformatics analysis revealed relationship between microRNA (miR)-361 and 3'-UTR of Gli1 gene. This study thus investigated the role of miR-361 and Gli1 in invasion and metastasis of esophageal cancer. Both tumor and adjacent tissues were collected from 58 esophageal cancer patients to test the expressions of miR-361 and Gli1, the relationship of which was confirmed by dual-luciferase reporter gene assay. Cultured esophageal cancer cells EC9706 were transfected with mimic NC, miR-361 mimic, si-NC, si-Gli1, miR-361 mimics+si-Glil, pQC or pQC-FU-Gli1. Transwell and colony formation assays were performed for cell invasion and attachment-independent growth. Expressions of Gli1, Snail, E-cadherin and N-cadherin proteins were revealed by Western blotting. The expression of Gli1 was significantly elevated in esophageal cancer tissues, along with lower miR-361 expression which was correlated with TNM stage. MiR-361 inhibited the expression of Gli1 via targeting on 3'-UTR of Gli1 gene. The transfection of miR-361 mimics and/or si-Gli1 significantly suppressed the growth of malignant cells. The over-expression of miR-361 and/or silencing of Gli1 decreased intracellular expression of Gli1, Snail and N-cadherin, and increased E-cadherin expression to suppress EMT and invasion of tumor cells while the opposite effects were obtained by over-expression of Gli1. Abnormal elevation of Gli1 and decrease of miR-361 were found in esophageal cancer tissues. MiR-361 weakened invasion of cancer cells and impeded EMT process via the inhibition of Gli1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app