Add like
Add dislike
Add to saved papers

Bcl-xL/Bak interaction and regulation by miRNA let-7b in the intrinsic apoptotic pathway of stored platelets.

Platelets 2017 November 11
Bcl-2 family proteins play key roles in the intrinsic apoptosis pathway in platelets, with both pro- and antiapoptotic protein expressions regulating survival during ex vivo storage. We detected a significant decrease in antiapoptotic Bcl-xL and increase in proapoptotic Bak expression on the third day of storage and as a result the ratio of Bak:Bcl-xL also decreased. Moreover, we identified an interaction between Bcl-xL and Bak. These shifts corresponded with activation of the apoptotic pathway, suggesting these proteins might play an important role in platelet survival. We then performed bioinformatic analysis to gain insight into protein expression regulation during storage. This identified a potential binding site of the microRNA (miRNA) let-7b in the 3'-UTR of the Bcl-xL gene, which we confirmed by a dual-luciferase reporter assay. We also determined that let-7b was upregulated during platelet storage, and let-7b transfection influenced Bcl-xL and Bak protein, but not mRNA, expression. Together, these data suggest that only posttranscriptional mechanisms are available for regulating gene expression in anucleate platelets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app