Add like
Add dislike
Add to saved papers

Trehalose, a temperature- and salt-induced solute with implications in pathobiology of Acinetobacter baumannii.

Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions worldwide. A major factor contributing to success of this bacterium is its outstanding ability to survive on dry surfaces. The molecular basis for desiccation resistance is not completely understood. This study focused on growth under osmotic stress and aimed to identify the pool of compatible solutes synthesized in response to these low water activity conditions. A. baumannii produced mannitol as compatible solute, but in contrast to Acinetobacter baylyi, also trehalose was accumulated in response to increasing NaCl concentrations. The genome of A. baumannii encodes a trehalose-6-phosphate phosphatase (OtsB) and a trehalose-6-phosphate synthase (OtsA). Deletion of otsB abolished trehalose formation, demonstrating that otsB is essential for trehalose biosynthesis. Growth of the mutant was neither impaired at low salt nor at 500 mM NaCl, but it did not grow at high temperatures, indicating a dual function of trehalose in osmo- and thermoprotection. This led us to analyse temperature dependence of trehalose formation. Indeed, expression of otsB was not only induced by high osmolarity but also by high temperature. Concurrently, trehalose was accumulated in cells grown at high temperature. Taken together, these data point to an important role of trehalose in A. baumannii beyond osmoprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app