Add like
Add dislike
Add to saved papers

Data on the expression and insulin-stimulated phosphorylation of IRS-1 by miR-96 in L6-GLUT4myc myocytes.

Data in Brief 2017 December
Diets containing a high saturated fatty acid (SFA) increase the risk of metabolic diseases, and microRNAs (miRNAs) induced by SFA have been implicated in the pathogenesis of insulin resistance and type 2 diabetes. In a previous report, miR-96 is found to be upregulated by SFA and involved in the suppression of insulin signaling intermediates, leading to insulin resistance in hepatocytes (Yang et al., 2016) [1]. This article presents the accompanying data collected from L6-GLUT4myc myocytes to determine the effects of miR-96 on insulin signaling in skeletal muscle cells. The transfection of miR-96 decreased the expression of IRS-1 in myocytes. Accordingly, miR-96 inhibited the insulin-stimulated phosphorylation of IRS-1, which led to an impairment of insulin signaling. More detailed analysis and understanding of the roles of miR-96 in diet-induced insulin resistance can be found in "Induction of miR-96 by dietary saturated fatty acids exacerbates hepatic insulin resistance through the suppression of INSR and IRS-1" (Yang et al., 2016) [1].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app