Add like
Add dislike
Add to saved papers

Genetically encoding thioacetyl-lysine as a non-deacetylatable analog of lysine acetylation in Escherichia coli .

FEBS Open Bio 2017 November
Reversible lysine acetylation is one of the most widely distributed post-translational modifications; it is involved in a variety of biological processes and can be found in all three domains of life. Acetyltransferases and deacetylases work coordinately to control levels of protein acetylation. In this work, we applied the genetic code expansion strategy to site-specifically incorporate N ε -thioacetyl-l-lysine (TAcK) as an analog of N ε -acetyl-l-lysine (AcK) into green fluorescent protein and malate dehydrogenase in Escherichia coli . We showed that TAcK could serve as an ideal functional mimic for AcK. It could also resist the bacterial sirtuin-type deacetylase CobB. Thus, genetic incorporation of TAcK as a non-deacetylatable analog of AcK into proteins will facilitate in vivo studies of protein acetylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app