Add like
Add dislike
Add to saved papers

Inhibition of nonenzymatic depurination of nucleic acids by polycations.

FEBS Open Bio 2017 November
DNA base depurination is one of the most common forms of DNA damage in vivo and in vitro , and the suppression of depurination is very important for versatile applications of DNA in biotechnology and medicine. In this work, it was shown that the polycations chitosan (Cho) and spermine (Spm) strongly inhibit DNA depurination through the formation of polyion complexes with DNA molecules. The intramolecular electrostatic interaction of positively charged polycations with DNA efficiently suppresses the protonation of purine groups, which is the key step of depurination. Importantly, the optimal pH for Cho's inhibition of depurination is significantly different from that of Spm. Cho is very effective in the inhibition of depurination in highly acidic media (pH: 1.5-3), whereas Spm is found to suppress the chemical reaction near neutral pH, as well as in acidic solutions. This remarkable pH specificity of the two biorelevant polycations is attributed to the difference in the pK a values of the amino groups. The relevance of our results with the biological roles of biogenic polycations is also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app