Add like
Add dislike
Add to saved papers

The photoelastic coefficient P 12 of H + implanted GaAs as a function of defect density.

Scientific Reports 2017 November 10
The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H+ ) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H+ energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient P 12 profile in non-annealed H+ implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient P 12 depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app