Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Pregnane X receptor promotes ethanol-induced hepatosteatosis in mice.

The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that modulates the metabolic response to drugs and toxic agents. Both PXR activation and deficiency promote hepatic triglyceride accumulation, a hallmark feature of alcoholic liver disease. However, the molecular mechanism of PXR-mediated activation of ethanol (EtOH)-induced steatosis is unclear. Here, using male wildtype (WT) and Pxr -null mice, we examined PXR-mediated regulation of chronic EtOH-induced hepatic lipid accumulation and hepatotoxicity. EtOH ingestion for 8 weeks significantly (1.8-fold) up-regulated Pxr mRNA levels in WT mice. The EtOH exposure also increased mRNAs encoding hepatic constitutive androstane receptor (3-fold) and its target, Cyp2b10 (220-fold), in a PXR-dependent manner. Furthermore, WT mice had higher serum EtOH levels and developed hepatic steatosis characterized by micro- and macrovesicular lipid accumulation. Consistent with the development of steatosis, lipogenic gene induction was significantly increased in WT mice, including sterol regulatory element-binding protein 1c target gene fatty-acid synthase (3.0-fold), early growth response-1 (3.2-fold), and TNFα (3.0-fold), whereas the expression of peroxisome proliferator-activated receptor α target genes was suppressed. Of note, PXR deficiency suppressed these changes and steatosis. Protein levels, but not mRNAs levels, of EtOH-metabolizing enzymes, including alcohol dehydrogenase 1, aldehyde dehydrogenase 1A1, and catalase, as well as the microsomal triglyceride transfer protein, involved in regulating lipid output were higher in Pxr -null than in WT mice. These findings establish that PXR signaling contributes to ALD development and suggest that PXR antagonists may provide a new approach for ALD therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app