Add like
Add dislike
Add to saved papers

Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action.

Doxil, a liposomal formulation of the chemotherapeutic drug doxorubicin, is FDA-approved for multiple indications. Doxil liposomes are designed to retain doxorubicin in circulation, minimize clearance by the mononuclear phagocyte system, and limit uptake in healthy tissue. Although pharmacokinetic data and survival statistics from clinical trials provide insight into distribution and efficacy, many details of the mechanism of action remain unresolved, despite the importance in translating liposome-based drug delivery systems to other molecules and cargo. Therefore, the objective of this study is to quantitatively assess the kinetics of doxorubicin leakage from Doxil liposomes. In contrast to previous studies, we consider three processes: dissolution of solid doxorubicin, protonation/deprotonation of soluble doxorubicin, and passive transport of neutral doxorubicin across the lipid bilayer of the liposomes. Experiments were performed for Doxil, Doxil-like liposomes, and Doxil-like liposomes with reduced cholesterol and pegylation. To mimic physiological conditions, we also performed experiments in serum and under slightly acidic conditions at pH5. We show that crystalline doxorubicin dissolution can be described by a first order rate constant of 1.0×10-9 cms-1 at 37°C. Doxorubicin leakage can be described by first order rate constant for transport across the lipid bilayer with values in the range from 1 to 3×10-12 cms-1 at 37°C. Based on these results we discuss implications for the mechanism of action, taking Doxil pharmacokinetics into account.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app