Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of Extended Benzannelation Orientation on Bergman and Related Cyclizations of Isomeric Quinoxalenediynes.

A combined computational and experimental study was conducted to examine the effect of extended benzannelation orientation on C1 -C5 and C1 -C6 cyclization of acyclic quinoxalenediynes. Calculations (mPW1PW91/cc-pVTZ//mPW1PW91/6-31G(d,p)) on terminal and phenylethynyl-substituted 5,6-diethynylquinoxaline and 6,7-diethynylquinoxaline showed C1 -C6 Bergman cyclization as the favored thermodynamic reaction pathway, with larger C1 -C6 preference for the angular quinoxalenediynes due to gain of a new aromatic sextet. Kinetic studies, as a function of 1,4-cyclohexadiene concentration, revealed retro-Bergman ring opening predominates over hydrogen atom abstraction (k-1 > k2 ) for 6,7-diethynylquinoxaline while 5,6-diethynylquinoxaline undergoes irreversible Bergman cyclization indicative of a large retro-Bergman ring opening barrier (k2 > k-1 ). The effect of extended linear versus angular benzannelation on reaction pathway shows in the contrasting photocyclizations of phenylethynyl derivatives. While angular 5,6-diethynylquinoxalines gave exclusive C1 -C6 photocyclization, linear 6,7-diethynylquinoxaline afforded C1 -C5 fulvene products. Computed singlet-triplet gaps and biradical stabilization energies indicated weak interaction between the nitrogen lone pair and proximal radical center in angular 5,6-diethynylquinoxalines. The overall data indicates extended angular benzannelation effectively renders Bergman cyclization irreversible due to favorable aromatic stabilization energy, while extended linear benzannelation results in increased retro-Bergman ring opening, allowing C1 -C5 cyclization to become a competitive reaction channel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app