Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A SRSF1 self-binding mechanism restrains Mir505-3p from inhibiting proliferation of neural tumor cell lines.

Anti-cancer Drugs 2018 January
Srsf1 has currently been demonstrated to be an oncogene that is precisely autoregulated for normal physiology. Although Mir505-3p has been reported as one of the regulatory miRNAs of Srsf1 in mouse embryonic fibroblast (MEF), the inhibitory effect of Mir505-3p on Srsf1 is poorly described in neural tumors. Whether SRSF1 autoregulation interferes with miRNA targeting on the Srsf1 transcript is unclear. In this work, we screened out one target site, out of three potential target sites on 3' UTR of Srsf1 transcript, that was required for Mir505-3p targeting. We showed that Mir505-3p was capable of inhibiting tumor proliferation driven by SRSF1 in two neural tumor cell lines, Neuro-2a (N2a) and U251, exclusively in serum-reduced condition. We observed that the protein level of SRSF1 was gradually promoted by increasing concentration of serum. We also found that overexpressed exogenous SRSF1 protein abolished this RNA interfering related targeting, suggesting that serum-rich condition restrains Mir505-3p from inhibiting Srsf1 transcript after inducing SRSF1 protein overexpression. Moreover, by applying bioinformatic analysis, the SRSF1 self-binding motif was found proximal to the Mir505-3p target site, which was required for a SRSF1 competitive self-binding interaction. The interaction of overexpressed exogenous SRSF1 protein and the SRSF1 self-binding motif was sufficient to restrain Mir505-3p from targeting the Srsf1 transcript. These results provide a better understanding of how tumorous microenvironment influences anticancer therapy in the neural system, suggesting potential strategic design for anticancer drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app