Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Underwater Oil Droplet Splitting on a Patterned Template.

Underwater oil droplets stretched and pinned by dual-dot oleophilic patterns on a superoleophobic substrate have been split into two nearly equal-volume daughter droplets using an underwater superoleophobic blade at substantially lower cutting speeds than reported in previous studies. A "liquid exchange model" based on Laplace pressure-driven liquid transport has been proposed to explain the mechanism of the underwater droplet split process. The dependence of droplet geometrical shape (curvature) and liquid properties (surface tension, viscosity) on the critical cutting speed that allows equal-volume split was investigated. Results demonstrate that critical cutting speed increases with increased curvature and surface tension of the split droplet, and decreases with increased droplet viscosity, which agrees with the proposed model. The ability to reproducibly split a single bulk oil droplet into daughter droplets with nearly equal volume facilitates the development of new functions for underwater microreactors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app