Add like
Add dislike
Add to saved papers

In vitro characterization of gamma oscillations in the hippocampal formation of the domestic chick.

Avian and mammalian brains have evolved independently from each other for about 300 million years. During that time, the hippocampal formation (HF) has diverged in morphology and cytoarchitecture, but seems to have conserved much of its function. It is therefore an open question how seemingly different neural organizations can generate the same function. A prominent feature of the mammalian hippocampus is that it generates different neural oscillations, including the gamma rhythm, which plays an important role in memory processing. In this study, we investigate whether the avian hippocampus also generates gamma oscillations, and whether similar pharmacological mechanisms are involved in this function. We investigated the existence of gamma oscillations in avian HF using in vitro electrophysiology in P0-P12 domestic chick (Gallus gallus domesticus) HF brain slices. Persistent gamma frequency oscillations were induced by the bath application of the cholinergic agonist carbachol, but not by kainate, a glutamate receptor agonist. Similar to other species, carbachol-evoked gamma oscillations were sensitive to GABAA , AMPA/kainate and muscarinic (M1) receptor antagonism. Therefore, similar to mammalian species, muscarinic receptor-activated avian HF gamma oscillations may arise via a pyramidal-interneuron gamma (PING)-based mechanism. Gamma oscillations are most prominent in the ventromedial area of the hippocampal slices, and gamma power is reduced more laterally and dorsally in the HF. We conclude that similar micro-circuitry may exist in the avian and mammalian hippocampal formation, and this is likely to relate to the shared function of the two structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app