Add like
Add dislike
Add to saved papers

Laboratory spectroscopy of methoxymethanol in the millimeter-wave range.

Methoxymethanol, CH3 OCH2 OH is a very interesting candidate for detection in the interstellar medium since it can be formed in the recombination reaction between two radicals considered as intermediates in methanol formation: CH3 O (already detected in the ISM) and CH2 OH. It could also be formed by the addition of CH3 O to formaldehyde (another abundant compound in the ISM) followed by abstraction of a hydrogen radical. In this study, we present the first spectroscopic characterization of methoxymethanol in the millimeter-wave range augmented by high level quantum chemical calculations. The analysis revealed three stable conformations all exhibiting different large amplitude motions (LAMs). For the analysis of the most stable conformation (I) we applied a model that accounts for hindered internal rotation of the methyl top. The analysis of conformation III was performed taking the interaction between the overall rotation and OH torsional motion into account. Conformation II was only tentatively assigned, as it exhibits several LAMs that significantly complicate the theoretical description. Accurate spectroscopic parameters obtained in this study provide a reliable basis for the detection of methoxymethanol in the ISM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app