Add like
Add dislike
Add to saved papers

Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions.

Nanotechnology 2017 November 10
Over the past few years, two-dimensional (2D) nanomaterials, such as MoS2, have been widely considered as the promising channel materials for next-generation high-performance phototransistors. However, their device performances still mostly suffer from slow photoresponse (e.g. with the time constant in the order of milliseconds) due to the relatively long channel length and the substantial surface defect induced carrier trapping, as well as the insufficient detectivity owing to the relatively large dark current. In this work, a simple multilayer MoS2 based photodetector employing vertical Schottky junctions of Au-MoS2-ITO is demonstrated. This unique device structure can significantly suppress the dark current down to 10(-12) A and enable the fast photoresponse of 64 μs, together with the stable responsivity of ∼1 A W(-1) and the high photocurrent to dark current ratio of ∼10(6) at room temperature. This vertical-Schottky photodetector can also exhibit a wide detection range from visible to 1000 nm. All these results demonstrate clearly that the vertical Schottky structure is an effective configuration for achieving high-performance optoelectronic devices based on 2D materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app