Add like
Add dislike
Add to saved papers

Enzymatic Synthesis of a Novel Neuroprotective Hydroxytyrosyl Glycoside.

The eco-friendly synthesis of non-natural glycosides from different phenolic antioxidants was carried out using a fungal β-xylosidase to evaluate changes in their bioactivities. Xylosides from hydroquinone and catechol were successfully formed, although the best results were obtained for hydroxytyrosol, the main antioxidant from olive oil. The formation of the new products was followed by thin-layer chromatography, liquid chromatography, and mass spectrometry. The hydroxytyrosyl xyloside was analyzed in more detail, to maximize its production and evaluate the effect of glycosylation on some hydroxytyrosol properties. The synthesis was optimized up to the highest production reported for a hydroxytyrosyl glycoside. The structure of this compound was solved by two-dimensional nuclear magnetic resonance and identified as 3,4-dihydroxyphenyl-ethyl-O-β-d-xylopyranoside. Evaluation of its biological effect showed an enhancement of both its neuroprotective capacity and its ability to ameliorate intracellular levels of reactive oxygen species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app