Add like
Add dislike
Add to saved papers

Effects of body condition score (BCS) on steroid- and eicosanoid-metabolizing enzyme activity in various mare tissues during winter anoestrus.

The objective of this study was to determine the activity of steroid- and eicosanoid-metabolizing enzymes in horses with varying BCSs. The BCSs of twenty non-pregnant, anoestrous mares were determined prior to euthanasia, and tissue samples were collected from the liver, kidney, adrenal gland, ovary and endometrium. Cytochrome P450 1A (CYP1A), 2C (CYP2C), 3A (CYP3A) and uridine 5'-diphospho-glucuronosyltransferase (UGT) activities were determined using luminogenic substrates. The MIXED procedure of SAS was used to test the effect of BCS on enzyme activity and differences between tissues. Activity of CYP1A in adrenals was increased (p ≤ .05) in BCS 5 versus BCSs 4 and 6. Activity of CYP1A in the liver was increased (p = .05) in BCS 4 versus BCSs 5 and 6. Activity of CYP1A was 100-fold greater (p < .0001) in the liver than in the adrenal, ovary and kidney. Activity of CYP2C was 100-fold greater (p < .0001) in the liver than in the adrenal, ovary and endometrium. Activity of CYP3A was only detectable in the liver. Activity of UGT in the kidney was decreased (p = .02) in BCS 4 versus BCSs 5 and 6. Activity of UGT was threefold greater (p < .0001) in the liver than in the kidney, whereas activity of UGT was ninefold greater (p < .0001) in the kidney than in the ovary and endometrium. In general, BCS did not alter the activity of steroid- and eicosanoid-metabolizing enzymes in horses. However, tissue differences in these enzymes indicated abundant hepatic metabolism in horses, which is similar to other livestock species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app