Case Reports
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High sensitivity of FISH analysis in detecting homozygous SMARCB1 deletions in poorly differentiated chordoma: a clinicopathologic and molecular study of nine cases.

Poorly differentiated chordomas (PDCs) represent a rare subset of notochordal neoplasms, affecting primarily children and associated with an aggressive outcome. In contrast to conventional chordomas, PDC show solid growth and increased cellularity, cytologic atypia, and mitotic activity. Recent studies have shown that PDCs are characterized by recurrent deletions encompassing the SMARCB1 locus, resulting in consistent loss of nuclear SMARCB1 expression. Thus PDC joined the expanding family of SMARCB1-deficient tumors characterized by various SMARCB1 structural abnormalities, ranging from large homozygous deletions to small intragenic mutations. In the present study, we investigate the SMARCB1 abnormalities in a group of nine well-characterized PDCs and to establish the sensitivity of the FISH method in detecting these changes in the clinical setting. We further assessed the pathologic features and clinical behavior of this cohort managed at our referral center over a 20-year period. The mean age at diagnosis was 10 years-of-age. All except one case occurred in the cranial region. All demonstrated strong nuclear expression of brachyury and loss of SMARCB1 expression. FISH identified homozygous SMARCB1 deletions in all except one case; additionally two cases revealed a heterozygous EWSR1 locus co-deletion. Clinical follow-up information was available in five patients. Two patients presented with distant metastases at initial diagnosis. Two of the three remaining patients with primary disease failed both locally and distantly after multimodality therapy. We conclude that PDCs are highly aggressive tumors and the dominant mechanism of loss of SMARCB1 expression is through large, homozygous SMARCB1 deletions that can be readily detected by FISH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app