Add like
Add dislike
Add to saved papers

Computer-aided design of human sialyltransferase inhibitors of hST8Sia III.

Sialyltransferase (ST) upregulation and the resultant hypersialylation of tumour cell surfaces is an established hallmark of many cancers including lung, breast, ovarian, pancreatic and prostate cancer. The role of ST enzymes in tumour cell growth and metastasis, as well as links to multi-drug resistance, has seen ST inhibition emerge as a target for potential antimetastatic cancer treatments. The most potent of these reported inhibitors are transition-state analogues. Although there are several examples of these in the literature, many have suspected poor pharmacokinetic properties and are not readily synthetically accessible. A proposed solution to these problems is the use of a neutral carbamate or 1,2,3-triazole linker instead of the more commonly used phosphodiester linker, and replacing the traditionally utilised cytidine nucleotide with uridine. Another issue in this area is the paucity of structural information of human ST enzymes. However, in late 2015 the structure of human ST8Sia III was reported (only the second human ST described so far), creating the opportunity for structure-based design of selective ST8 inhibitors for the first time. Herein, molecular docking and molecular dynamics simulations with the newly published crystal structure of hST8Sia III were performed for the first time with selected ST transition state analogues. Simulations showed that these compounds could participate in many of the key interactions common with the natural donor and acceptor substrates, and reveals some key insights into the synthesis of potentially selective ST inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app