Add like
Add dislike
Add to saved papers

Analysis of factors controlling sediment phosphorus flux potential of wetlands in Hulun Buir grassland by principal component and path analysis method.

Phosphorus (P) flux potential can predict the trend of phosphorus release from wetland sediments to water and provide scientific parameters for further monitoring and management for phosphorus flux from wetland sediments to overlying water. Many studies have focused on factors affecting sediment P flux potential in sediment-water interface, but rarely on the relationship among these factors. In the present study, experiment on sediment P flux potential in sediment-water interface was conducted in six wetlands in Hulun Buir grassland, China and the relationships among sediment P flux potential in sediment-water interface, sediment physical properties, and sediment chemical characteristics were examined. Principal component analysis and path analysis were used to discuss these data in correlation coefficient, direct, and indirect effects on sediment P flux potential in sediment-water interface. Results indicated that the major factors affecting sediment P flux potential in sediment-water interface were amount of organophosphate-degradation bacterium in sediment, Ca-P content, and total phosphorus concentrations. The factors of direct influence sediment P flux potential were sediment Ca-P content, Olsen-P content, SOC content, and sediment Al-P content. The indirect influence sediment P flux potential in sediment-water interface was sediment Olsen-P content, sediment SOC content, sediment Ca-P content, and sediment Al-P content. And the standard multiple regression describing the relationship between sediment P flux potential in sediment-water interface and its major effect factors was Y = 5.849 - 1.025X1  - 1.995X2  + 0.188X3  - 0.282X4 (r = 0.9298, p < 0.01, n = 96), where Y is sediment P flux potential in sediment-water interface, X1 is sediment Ca-P content, X2 is sediment Olsen-P content, X3 is sediment SOC content, and X4 is sediment Al-P content. Therefore, future research will focus on these sediment properties to analyze the interrelation among sediment properties factors, main vegetable factors, and environment factors which influence the sediment P flux potential in sediment-water interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app