Add like
Add dislike
Add to saved papers

Bardoxolone methyl (CDDO-Me or RTA402) induces cell cycle arrest, apoptosis and autophagy via PI3K/Akt/mTOR and p38 MAPK/Erk1/2 signaling pathways in K562 cells.

Chronic myeloid leukemia (CML) treatment remains a challenge due to drug resistance and severe side effect, rendering the need on the development of novel therapeutics. CDDO-Me (Bardoxolone methyl), a potent Nrf2 activator and NF-κB inhibitor, is a promising candidate for cancer treatment including leukemia. However, the underlying mechanism for CDDO-Me in CML treatment is unclear. This study aimed to evaluate the molecular interactome of CDDO-Me in K562 cells using the quantitative proteomics approach stable-isotope labeling by amino acids in cell culture (SILAC) and explore the underlying mechanisms using cell-based functional assays. A total of 1,555 proteins responded to CDDO-Me exposure, including FANCI, SRPK2, XPO5, HP1BP3, NELFCD, Na+ ,K+ -ATPase 1, etc. in K562 cells. A total of 246 signaling pathways and 25 networks regulating cell survival and death, cellular function and maintenance, energy production, protein synthesis, response to oxidative stress, and nucleic acid metabolism were involved. Our verification experiments confirmed that CDDO-Me down-regulated Na+ ,K+ -ATPase α1 in K562 cells, and significantly arrested cells in G2 /M and S phases, accompanied by remarkable alterations in the expression of key cell cycle regulators. CDDO-Me caused mitochondria-, death receptor-dependent and ER stress-mediated apoptosis in K562 cells, also induced autophagy with the suppression of PI3K/Akt/mTOR signaling pathway. p38 MAPK/Erk1/2 signaling pathways contributed to both apoptosis- and autophagy-inducing effects of CDDO-Me in K562 cells. Taken together, these data demonstrate that CDDO-Me is a potential anti-cancer agent that targets cell cycle, apoptosis, and autophagy in the treatment of CML.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app