Add like
Add dislike
Add to saved papers

Tolerogenic dendritic cells are efficiently generated using minocycline and dexamethasone.

Scientific Reports 2017 November 9
Tolerogenic dendritic cells (tDCs) represent a promising tool for cellular therapy against autoimmune diseases, allergies, and transplantation rejection. Numerous pharmacological agents are known to induce tDC generation. Minocycline, which has long been used as a broad-spectrum antibiotic, was recently shown to significantly increase the generation of DCs with regulatory properties. Here, we examined the effect of the combination of minocycline with dexamethasone, rapamycin, vitamin D3, and interleukin (IL)-10, which are all known inducers of tDC generation. The highest number of tDCs was generated when minocycline and dexamethasone were used together with granulocyte colony-stimulating factor (GM-SCF) and IL-4. The tolerogenicity of the minocycline/dexamethasone-conditioned tDCs was much better than or at least equal to those of the tDCs generated with either one of these agents, as assessed through in vitro phenotypic and functional assays. In addition, pretreatment with MOG35-55 peptide-pulsed minocycline/dexamethasone-conditioned tDCs significantly ameliorated the clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection in a murine model. These results confirmed that tDCs with potent tolerogenic properties could be efficiently generated by the combined use of minocycline and dexamethasone, along with GM-CSF and IL-4. Our results would help in the development of ex vivo tDC-based immunotherapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app