Add like
Add dislike
Add to saved papers

Cellular information dynamics through transmembrane flow of ions.

Scientific Reports 2017 November 9
We propose cells generate large transmembrane ion gradients to form information circuits that detect, process, and respond to environmental perturbations or signals. In this model, the specialized gates of transmembrane ion channels function as information detectors that communicate to the cell through rapid and (usually) local pulses of ions. Information in the ion "puffs" is received and processed by the cell through resulting changes in charge density and/or mobile cation (and/or anion) concentrations alter the localization and function of peripheral membrane proteins. The subsequent changes in protein binding to the membrane or activation of K+ , Ca2+ or Mg2+ -dependent enzymes then constitute a cellular response to the perturbation. To test this hypothesis we analyzed ion-based signal transmission as a communication channel operating with coded inputs and decoded outputs. By minimizing the Kullback-Leibler cross entropy [Formula: see text] between concentrations of the ion species inside [Formula: see text] and outside [Formula: see text] the cell membrane, we find signal transmission through transmembrane ion flow forms an optimal Shannon information channel that minimizes information loss and maximizes transmission speed. We demonstrate the ion dynamics in neuronal action potentials described by Hodgkin and Huxley (including the equations themselves) represent a special case of these general information principles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app