JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies.

Blood 2018 January 5
4-1BB (CD137, tumor necrosis factor receptor superfamily 9) is an inducible costimulatory receptor expressed on activated T and natural killer (NK) cells. 4-1BB ligation on T cells triggers a signaling cascade that results in upregulation of antiapoptotic molecules, cytokine secretion, and enhanced effector function. In dysfunctional T cells that have a decreased cytotoxic capacity, 4-1BB ligation demonstrates a potent ability to restore effector functions. On NK cells, 4-1BB signaling can increase antibody-dependent cell-mediated cytotoxicity. Agonistic monoclonal antibodies targeting 4-1BB have been developed to harness 4-1BB signaling for cancer immunotherapy. Preclinical results in a variety of induced and spontaneous tumor models suggest that targeting 4-1BB with agonist antibodies can lead to tumor clearance and durable antitumor immunity. Clinical trials of 2 agonist antibodies, urelumab and utomilumab, are ongoing. Despite initial signs of efficacy, clinical development of urelumab has been hampered by inflammatory liver toxicity at doses >1 mg/kg. Utomilumab has a superior safety profile, but is a less potent 4-1BB agonist relative to urelumab. Both antibodies have demonstrated promising results in patients with lymphoma and are being tested in combination therapy trials with other immunomodulatory agents. In an effort to optimally leverage 4-1BB-mediated immune activation, the next generation of 4-1BB targeting strategies attempts to decouple the observed antitumor efficacy from the on-target liver toxicity. Multiple therapeutics that attempt to restrict 4-1BB agonism to the tumor microenvironment and minimize systemic exposure have emerged. 4-1BB is a compelling target for cancer immunotherapy and future agents show great promise for achieving potent immune activation while avoiding limiting immune-related adverse events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app