Add like
Add dislike
Add to saved papers

Gas Chromatography Mass Spectrometry (GC-MS) for Identification of Designer Stimulants Including 2C Amines, NBOMe Compounds, and Cathinones in Urine.

Phenethylamine derivatives are being increasingly exploited for recreational use as "designer" stimulants designed to mimic psychostimulant properties of amphetamine or other illicit substances like 3,4-methylenedioxymethamphetamine (MDMA [ecstasy]). Clandestine operations meticulously design phenethylamines so the user can bypass legal action when detected, as many of these are yet to be regulated by government authorities. Substituted phenethylamines or 2C amines, N-methoxybenzyl derivatives of the corresponding 2C amines commonly known as NBOMe compounds, and cathinones are among the most commonly abused phenethylamines. Current FDA-approved assays used in screening for illicit drug use lack the sensitivity needed to detect designer stimulants making it challenging for toxicologists to accurately identify these compounds. Gas chromatography mass spectrometry (GC-MS) is a sensitive method for identifying designer stimulants. This unit describes and compares two qualitative GC-MS methods for identifying 2C amines, NBOMe compounds, and cathinones in urine. © 2017 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app