Add like
Add dislike
Add to saved papers

Two-color, one-photon uncaging of glutamate and GABA.

Neuronal cells receive a variety of excitatory and inhibitory signals which they process to generate an output signal. In order to study the interaction between excitatory and inhibitory receptors with exogenously applied transmitters in the same preparation, two caging chromophores attached to glutamate and GABA were developed that were selectively photolyzed by different wavelengths of light. This technique has the advantage that the biologically inactive caged compound can be applied at equilibrium prior to the near instantaneous release of the transmitters. This method therefore mimics the kinetics of endogenously released transmitters that is otherwise not possible in brain slice preparations. Repeated photolysis with either of the two wavelengths resulted in GABA- or glutamate-induced activation of both ionotropic and metabotropic receptors to evoke reproducible currents. With these compounds, the interaction between inhibitory and excitatory receptors was examined using whole field photolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app