JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting.

Biochemistry 2018 January 10
Minus-one programmed ribosomal frameshifting (-1 PRF) allows the precise maintenance of the ratio between viral proteins and is involved in the regulation of the half-lives of cellular mRNAs. Minus-one ribosomal frameshifting is activated by several stimulatory elements such as a heptameric slippery sequence (X XXY YYZ) and an mRNA secondary structure (hairpin or pseudoknot) that is positioned 2-8 nucleotides downstream from the slippery site. Upon -1 RF, the ribosomal reading frame is shifted from the normal zero frame to the -1 frame with the heptameric slippery sequence decoded as XXX YYY Z instead of X XXY YYZ. Our research group has developed chemically modified peptide nucleic acid (PNA) L and Q monomers to recognize G-C and C-G Watson-Crick base pairs, respectively, through major-groove parallel PNA·RNA-RNA triplex formation. L- and Q-incorporated PNAs show selective binding to double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). The sequence specificity and structural selectivity of L- and Q-modified PNAs may allow the precise targeting of desired viral and cellular RNA structures, and thus may serve as valuable biological tools for mechanistic studies and potential therapeutics for fighting diseases. Here, for the first time, we demonstrate by cell-free in vitro translation assays using rabbit reticulocyte lysate that the dsRNA-specific chemically modified PNAs targeting model mRNA hairpins stimulate -1 RF (from 2% to 32%). An unmodified control PNA, however, shows nonspecific inhibition of translation. Our results suggest that the modified dsRNA-binding PNAs may be advantageous for targeting structured RNAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app