Add like
Add dislike
Add to saved papers

Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil.

The goal of the study was to evaluate the application of biochar (BC) to the sewage sludge (SL) on the adsorption and desorption capacity of Cd(II), Cu(II), Ni(II) and Zn(II). The effect of biochar contribution in the sewage sludge (2.5, 5 and 10%) was investigated. The isotherms data were fitted to the Langmiur (LM), Freundlich (FM) and Temkin (TM) models. The best fitting for kinetic study was obtained for the pseudo-second-order equation. The best fitting of the experimental data was observed for the LM in the case of SL and BC, and for the FM in the case of SL- and SL/BC-amended soil. SL was characterized by even four-order higher sorption capacity than BC. The addition of the BC to the SL and next to the soil increased the adsorption capacity of the soil and the SL-amended soil. In the case of all investigated potentially toxic elements (PTEs), the highest adsorption capacity was achieved for SL-amended soil in comparison with the control soil. In the case of other experimental variants, the adsorption capacity of metal ions was as follows: 2.5% BC > 5.0% BC > 10% BC. The negative correlation between hydrated radius of metal ions and the kinetics of sorption was observed. However, the desorption of PTEs from BC/SL-amended soil was significantly lower than for SL-amended soil (except of Cd) and non-amended soil. It can be concluded that the addition of the biochar enhanced the immobilization of PTEs and reduced their bioavailability and mobility in the soil amended by the sewage sludge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app