Add like
Add dislike
Add to saved papers

Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres.

Scientific Reports 2017 November 8
The exact suppression of backscattering from rotationally symmetric objects requires dual symmetric materials where εr = μr . This prevents their design at many frequency bands, including the optical one, because magnetic materials are not available. Electromagnetically small non-magnetic spheres of large permittivity offer an alternative. They can be tailored to exhibit balanced electric and magnetic dipole polarizabilities a1 = b1 , which result in approximate zero backscattering. In this case, the effect is inherently narrowband. Here, we put forward a different alternative that allows broadband functionality: Wavelength-sized spheres made from low permittivity materials. The effect occurs in a parameter regime where approximate duality is met for all multipolar order an  ≈ bn , in a weakly wavelength dependence fashion. In addition, and despite of the low permittivity, the overall scattering response of these spheres is still significant. Scattering patterns are shown to be highly directive across an octave spanning band. The effect is analytically and numerically shown using the Mie coefficients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app