Add like
Add dislike
Add to saved papers

Ventricular depolarisation vectors in exercise induced myocardial ischaemia.

Scientific Reports 2017 November 8
Ischaemia reduces membrane excitability and conduction of myocardial depolarisation. This would alter the synergy of electromotive forces that contribute to a resultant force at any instant. Changes in magnitude and direction of resultant forces are reflected in electrocardiographic signals. Here we show a method for obtaining the coordinates of resultant electrical forces during exercise derived from a bipolar orthogonal lead system for calculation of electrical vectors in three planes. In a trial, analysis of changes in vectors indicated that the extent of reduction in magnitude with exercise was significantly greater in groups of patients categorized by impaired effort tolerance and signs of ischaemia. Measurement of changes in the spectrum of depolarisation vectors during exercise has the potential for non-invasive assessment of myocardial ischaemia. This could be the basis of a portable, low-cost tool for investigation of patients with symptoms suggestive of coronary artery disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app