Add like
Add dislike
Add to saved papers

Proteomic Profiling of Exosomes Secreted by Breast Cancer Cells with Varying Metastatic Potential.

Proteomics 2017 December
Cancer cells actively release extracellular vesicles, including exosomes, into the surrounding microenvironment. Exosomes play pleiotropic roles in cancer progression and metastasis, including invasion, angiogenesis, and immune modulation. However, the proteome profile of exosomes isolated from cells with different metastatic potential and the role of these exosomes in driving metastasis remains unclear. Here, we conduct a comparative proteomic analysis of exosomes isolated from several genetically related mouse breast tumor lines with different metastatic propensity. The amount of exosomes produced and the extent of cancer-associated protein cargo vary significantly between nonmetastatic and metastatic cell-derived exosomes. Metastatic cell-derived exosomes contain proteins that promote migration, proliferation, invasion, and angiogenesis while the nonmetastatic cell-derived exosomes contain proteins involved in cell-cell/cell-matrix adhesion and polarity maintenance. The metastatic exosomes contain a distinct set of membrane proteins including Ceruloplasmin and Metadherin which could presumably aid in targeting the primary cancer cells to specific metastatic sites. Hence, it can be concluded that the exosomes contain different protein cargo based on the host cells metastatic properties and can facilitate in the dissemination of the primary tumors to distant sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app