Add like
Add dislike
Add to saved papers

Application of oligonucleotides to construct a conditional targeting vector for porcine IκBα.

Conditional gene targeting at porcine IκBα may be a solution to delayed xenograft rejection, the main barrier to xenotransplantation. An oligonucleotide‑based method was applied to construct the vector for conditional targeting of porcine IκBα. This method was free from PCR amplification during the assembling of the different vector elements, avoiding introduction of unwanted mutations. With the help of short double‑stranded DNA fragments produced by annealing oligonucleotides, nondirectional cloning has also been avoided. By making the best of directional cloning, a highly complex targeting vector was built within 3 weeks. The present study also explained why the two recombination‑based methods (recombineering and gateway recombination), although having demonstrated to be highly efficient in constructing ordinary targeting vectors, were not appropriate in this context. The description in the present study of an additional method to efficiently construct targeting vectors is suggested to introduce more flexibility in the field therefore helping to meet the different needs of the researchers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app