Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A planar dielectrophoresis-based chip for high-throughput cell pairing.

Lab on a Chip 2017 November 22
This paper reports the design and fabrication of a planar chip for high-throughput cell trapping and pairing (more than 2400 single cell-cell pairs in a microwell array) in a 1 × 1.5 cm area by positive dielectrophoresis (p-DEP) within only several minutes. The p-DEP was generated by applying an alternating current signal on a novel two-pair interdigitated array (TPIDA) electrode. The TPIDA electrode not only enabled the planar chip to be incorporated with a most often used PDMS microfluidic channel, but also contributed to a high single cell-cell pairing efficiency up to 74.2% by decreasing the induced electric field during consecutive p-DEP trapping of two cell types. Furthermore, the paired cells in each microwell could be "pushed" together into a microbaffle by a liquid flow through a capillary-sized channel, resulting in single cell-cell contact. More importantly, the planar chip could be used repeatedly by a simple water cleaning process. The planar chip offers an effective way for high-throughput single cell-cell pairing, which could provide a facile platform for cell communication and a precise cell pairing step in cell fusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app