Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Developmental timing differences underlie armor loss across threespine stickleback populations.

Comparing ontogenetic patterns within a well-described evolutionary context aids in inferring mechanisms of change, including heterochronies or deletion of developmental pathways. Because selection acts on phenotypes throughout ontogeny, any within-taxon developmental variation has implications for evolvability. We compare ontogenetic order and timing of locomotion and defensive traits in three populations of threespine stickleback that have evolutionarily divergent adult forms. This analysis adds to the growing understanding of developmental genetic mechanisms of adaptive change in this evolutionary model species by delineating when chondrogenesis and osteogenesis in two derived populations begin to deviate from the developmental pattern in their immediate ancestors. We found that differences in adult defensive morphologies arise through abolished or delayed initiation of these traits rather than via an overall heterochronic shift, that intra-population ontogenetic variation is increased for some derived traits, and that altered armor developmental timing differentiates the derived populations from each other despite parallels in adult lateral plate armor phenotypes. We found that changes in ossified elements of the pelvic armor are linked to delayed and incomplete development of an early-forming pelvic cartilage, and that this disruption likely presages the variable pelvic vestiges documented in many derived populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app