Add like
Add dislike
Add to saved papers

Zoledronic acid sensitizes rhabdomyosarcoma cells to cytolysis mediated by human γδ T cells.

Oncology Letters 2017 November
Rhabdomyosarcoma (RMS) is the most common type of soft-tissue sarcoma in children. Immunotherapy has been proposed as a treatment for this deadly tumor. In the present study, the cytotoxicity of ex vivo expanded γδ T cells on RMS cell lines was evaluated and the molecular interactions involved were investigated. γδ T cells were expanded in vitro using peripheral blood mononuclear cells from 5 healthy donors and were stimulated with zoledronic acid (Zol) and interleukin 2. RMS cell lines RD and A-673 were used as target cells. The cytotoxicity of the γδ T cells against RMS was assessed in vitro and in vivo. γδ T cells were cytotoxic to RMS cells. Importantly, Zol markedly increased their cytotoxic potential. RMS cells treated with Zol-stimulated γδ T cells to produce interferon γ. γδ T cell-mediated cytotoxicity was primarily through the T cell receptor-dependent signaling pathway in blocking studies. Transfer of γδ T cells together with Zol into nude mice induced the regression of RD tumor xenotransplants. The results of the present study provide the rationale for the clinical evaluation of γδ T cells in RMS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app