Add like
Add dislike
Add to saved papers

A new insight into the theoretical design of highly dispersed and stable ceria supported metal nanoparticles.

How to design and develop ceria supported metal nanoparticles (M/CeO2 ) catalysts with high performance and sintering resistance is a great challenge in heterogeneous catalysis and surface science. In the present work, we propose two ways to improve the anti-sintering capability of M/CeO2 catalysts. One is to introduce Ti atom on CeO2 (1 1 1) to form monatomically dispersed Ti, TiOx or TiO2 -like species on ceria. Density functional theory calculations show that the much stronger interactions between Au and Ti modified CeO2 (1 1 1) occur compared with that on CeO2 (1 1 1). According to the electronic analysis, the strong interactions are attributed to the electron transfer from the Ti modified ceria substrate to Au. The other is to dope Ti into CeO2 (1 1 1) to form Tix Ce1-x O2 . This also leads to the interaction enhancement between Au and Tix Ce1-x O2 (1 1 1). Electronic analysis indicates that the charge protuberance of surface O atoms near Ti atom results in the strong interactions between metal and ceria. This work provides new ideas for preparing M/CeO2 catalysts with high dispersity and stability, and sheds light into the theoretical design of catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app