Add like
Add dislike
Add to saved papers

Androgens Mediate β-adrenergic Vasorelaxation Impairment Using Adenylyl Cyclase.

Cardiovascular disease development has been associated with sex differences, suggesting that sex hormones are implicated in vascular function and development of hypertension. Vascular tone comparison at different stages of rat growth represents a good model to study testosterone-related vascular response. We explored the role of testosterone in modulation of age-dependent impaired β-adrenergic vasodilation. The 3-week-old male Sprague-Dawley rats were sorted in 3-week-old rats without any manipulation and 3-week-old rats treated with testosterone. The 9-week-old rats were randomly grouped into 9-week-old rats without any manipulation (sham), 9-week-old rats that underwent gonadectomy (9-week-old castrated), and 9-week-old castrated treated with testosterone replacement therapy (9-week-old castrated + testosterone). Vascular relaxation was evaluated in aortic rings. β-adrenergic receptor protein expression, cyclic adenosine monophosphate production, testosterone levels, and adenylyl cyclase (AC) gene expression were assessed. Testosterone levels were low in 3-week-old and 9-week-old castrated rats compared with 9-week-old sham rats. Testosterone replacement raised these levels in 3-week-old and 9-week-old castrated rats similar to those of 9-week-old sham rats. SQ22536, the AC inhibitor, prevented isoproterenol-induced relaxation in aortic rings from 3-week-old and 9-week-old castrated rats. The β-adrenergic receptor protein expression was similar in all experimental groups. AC mRNA and protein expression and cyclic adenosine monophosphate levels were elevated in 3-week-old and 9-week-old castrated rats compared with 3-week-old + testosterone, 9-week-old sham, and 9-week-old castrated + testosterone rats. In conclusion, we demonstrated that age maturation was associated with vascular relaxation impairment. Variations in testosterone levels and reduced AC expression may be responsible for this altered vascular function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app